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Dynamic motion is fundamental to life, 
with cells and their components, 
including macromolecules and atoms, 
constantly in motion. Molecular 
dynamics (MD) simulations provide 
insight into molecular vibrations, while 
nuclear magnetic resonance (NMR) 
captures a limited number of coexisting 
structures for small molecules. However, 
primary structural techniques such as X-
ray crystallography and cryo-electron 
microscopy (cryo-EM) single-particle 
analysis primarily produce static 
structures. These methods can 
determine atomic-resolution structures 
of biomolecules, however capturing 
low-resolution 3D structures of 

macromolecules exhibit intrinsic 
flexibility and continuous confor-
mational changes remains challenging. 
This challenge arises from the reliance 
on averaging processes, where a small, 
homogeneous subset of particles is 
selected from a heterogeneous 
population and averaged to generate 
a static 3D structure. While averaging 
improves the SNR and enables high-
resolution reconstruction of rigid 
domains, it often results in the loss of 
density in flexible regions and introduces 
anisotropic resolution in the resulting 3D 
map. For instance, two ankyrin repeated 
regions of TRPV1 were absent in its 
atomic resolution 3D density map [2]. As 

a result, the structural variety for the 
majority of unselected particles remains 
inaccessible, limiting the ability to fully 
explore macromolecular flexibility. 
Therefore, single-molecule 3D structure 
determination, without the need for 
averaging, is a highly sought-after 
approach for understanding 
macromolecular dynamics and 
mechanisms during chemical reactions.  
 
A fundamental experimental approach 
to studying the structure of flexible 
macromolecules involves determining 
the structure of each macromolecule 
individually, without relying on 
averaging across multiple copies [3]. 

SINGLE MOLECULE 3D STRUCTURES DETERMINED BY INDIVIDUAL-PARTICLE ELECTRON TOMOGRAPHY 
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Macromolecules, such as proteins and nucleic acids, play essential roles in cellular functions through dynamic structural 
changes. Understanding these functions requires detailed characterization of structural dynamics. While techniques like X-ray 
crystallography and cryo-EM resolve high-resolution static structures, they struggle to capture low-resolution, flexible structures 
and the full distribution of conformations during chemical reactions. These limitations arise from averaging processes that 
enhance signal-to-noise ratio (SNR) but exclude flexible regions, distort resolution, and miss rare high-energy states. To address 
this, we developed individual-particle electron tomography (IPET), a method for determining 3D structures of single particles at 
low-to-intermediate resolution (up to 2 nm) without averaging. IPET reconstructs a detailed 3D density map by capturing images 
at multiple tilt angles, facilitating flexible model fitting and revealing unique particle structures. This method reveals unbiased 
structural distributions, enhancing the study of molecular dynamics, phase transitions, and structural alterations during chemical 
reactions and self-folding. 
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Figure 1 Tertiary structure of single RNA molecule determined by IPET | The left side of the figure shows the process of IPET where RNA samples 
in frozen TEM grid are imaged by tilting the sample at various angles. The right side of the figure shows the 3D density maps of 72 individual RNA 
molecules, which reveal the individual helices within each RNA particle. Figure adapted from Ref. [1].    
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Electron tomography (ET) enables high-
resolution imaging of single objects by 
capturing a series of tilted views from 
different angles [4-6]. While ET has been 
successfully applied to reconstruct the 
3D structure of cellular sections and 
entire bacteria at nanometer-scale 
resolutions [7], achieving reliable 3D 
reconstructions of individual macro-
molecules remains a significant 
challenge. The first reported 3D 
reconstruction of an individual 
macromolecule, a fatty acid synthetase 
was achieved using negative staining 
(NS) by Walter Hoppe’s group in 1974 [5], 
marking the beginning of ET. However, 
the validity of this reconstruction has 
been questioned  because the 
molecule was exposed to a radiation 
dose far exceeding the established 
damage threshold measured on protein 
crystals at that time (~1 e-/Å2 for 7Å 
resolution), by orders of magnitude [8,9]. 
Although several subsequent studies 
attempted reconstructions of individual 
molecules [5, 10-17], skepticism persisted 
regarding whether a single protein 
particle could provide sufficient signal to 
produce a meaningful 3D structure at 
adequate resolution. For decades, this 
skepticism reinforced the belief that 
individual macromolecules lack the 
necessary signal-to-noise ratio for 
reliable and interpretable 3D 
reconstructions. 

The possibility of achieving an 
intermediate-resolution (1–3 nm) 3D 
structure from multiple low-contrast ET 
images of an individual macromolecule 
under low-dose condition remains 
uncertain. Ren and colleagues 
addressed this uncertainty by re-
examining the problem using simulated 
ET data, as well as experimental NS and 
cryo-electron tomography (cryo-ET) 
images (3). Achieving a 3D image of a 
single molecule is highly challenging 
due to the extremely low SNR, resulting 
from the limited electron dose required 
to prevent radiation damage. To 
address this challenge, IPET employs a 
robust iterative refinement process that 

integrates automatically generated 
dynamic filters and soft masks. This 
approach eliminates the need for a pre-
specified initial model, class averaging 
of multiple macromolecules, or an 
ordered lattice arrangement. Instead, 
IPET tolerates measurement errors such 
as tilt inaccuracies and image 
distortions. By systematically reducing 
the reconstruction image size, it 
minimizes the impact of these errors and 
large-scale distortions in ET micrographs 
on the 3D reconstruction. Their findings 
demonstrated that intermediate-
resolution 3D structures (1–3 nm) can 
potentially be achieved for individual 
protein particles using the iterative 
refinement approach known as 
Individual-Particle Electron Tomography 
(IPET) [3,16,18,19]. 

Recent refinements in the IPET approach 
have incorporated several TEM-based 
advancements to enhance single-
molecule 3D imaging including: Image 
contrast enhancement [20]; Automated 
data acquisition [21]; Missing-wedge 
correction [22]. IPET has been used to 
characterize low- to intermediate-
resolution (~2 nm) dynamic structures of 
various flexible macromolecules, 
including: antibodies [16, 18, 23, 24], DNA / 
RNA -related nanostructures [25-28], 
lipoproteins [29-31], neuronal proteins [19, 32-

34]. These advancements position IPET as 
a promising tool for structural studies of 
single molecular particles, providing 
deeper insights into the dynamic 
behaviors and mechanisms of flexible 
macromolecules.  

The IPET approach has been recently 
further refined to examine large-scale, 
continuous conformational changes of 
RNA origami nanoparticles at tertiary 
structural resolution during their self-
folding process [1]. RNA self-folding 
presents significant challenges for 
structural studies due to extensive 
conformational changes involved. By 
optimizing cryo-ET acquisition 
parameters and eliminating the need 
for particle selection, classification, 

averaging, or chemical fixation, Liu et 
al., successfully reconstructed 120 
individual 3D density maps from 120 
folding RNA nanoparticles (Fig. 1). These 
nanoparticles were designed to form a 
6-helix bundle with a clasp helix. The 
reconstructed maps revealed distinct 
tertiary structures for each RNA helix 
arrangement, statistically confirming 
two previously known conformations 
while identifying additional intermediate 
and highly compact states. This 
structural variation suggests a 
maturation pathway likely driven by 
helix-helix compaction interactions, 
offering new insights into RNA folding 
dynamics. 

The IPET-based approach demonstrates 
broad applicability for studying flexible 
biomolecular complexes, including 
tracking intramolecular conformational 
changes in tetra-nucleosome arrays 
during phase transitions. In this study, we 
applied the IPET technique to 
investigate the inner and intramolecular 
conformational changes of tetra-
nucleosome arrays during phase 
transitions [35, 36]. Zhang et al. identified 
that key determinant of chromatin array 
structure is the angle between the 
entry/exit DNA strands and their 
tangents relative to the nucleosomal 
disc. Furthermore, Zhang et al., found 
that the phase transition involves the 
exposure of hydrophobic nucleosomal 
surfaces, altering inter-nucleosome 
interactions. These insights illuminate the 
initial stages of intra-array compaction 
and suggest a key precursor to 
chromatin condensation, providing a 
physical mechanism by which 
chromatin transitions from interphase to 
metaphase structures. 

In summary, the IPET approach offers a 
unique tool for determining the 3D 
structure of individual biomolecular 
particles without the need for averaging 
across multiple particles. By analyzing 
hundreds of 3D structures from distinct 
particle, IPET provides an unbiased 
representation of structural dynamics, 
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allowing visualization of the full spectrum 
of macromolecular motions and kinetic 
processes in solution. This capability is 
essential for understanding critical 
biomolecular processes such as 
macromolecular synthesis, folding, and 
chemical reactions. 
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 Editor’s Views || This short article by Gang Ren concisely summarizes the IPET-related works and clearly states the 
issue that IPET can address (i.e., 3D structure determination of biomolecules without averaging across multiple 
particles). The applications of IPET span the structural determination of a diverse range of biological 
macromolecules and molecular complexes, offering unique insights into their dynamic behaviors. 
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